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ABSTRACT: Climate models may be limited in their inferential use if they cannot be locally validated or do not account
for spatial uncertainty. Much of the focus has gone into determining which interpolation method is best suited for creating
gridded climate surfaces, which often a covariate such as elevation (Digital Elevation Model, DEM) is used to improve the
interpolation accuracy. One key area where little research has addressed is in determining which covariate best improves
the accuracy in the interpolation. In this study, a comprehensive evaluation was carried out in determining which covariates
were most suitable for interpolating climatic variables (e.g. precipitation, mean temperature, minimum temperature, and
maximum temperature). We compiled data for each climate variable from 1950 to 1999 from approximately 500 weather
stations across the Western United States (32◦ to 49◦ latitude and −124.7◦ to −112.9◦ longitude). In addition, we examined
the uncertainty of the interpolated climate surface. Specifically, Thin Plate Spline (TPS) was used as the interpolation method
since it is one of the most popular interpolation techniques to generate climate surfaces. We considered several covariates,
including DEM, slope, distance to coast (Euclidean distance), aspect, solar potential, radar, and two Normalized Difference
Vegetation Index (NDVI) products derived from Advanced Very High Resolution Radiometer (AVHRR) and Moderate
Resolution Imaging Spectroradiometer (MODIS). A tenfold cross-validation was applied to determine the uncertainty of
the interpolation based on each covariate. In general, the leading covariate for precipitation was radar, while DEM was the
leading covariate for maximum, mean, and minimum temperatures. A comparison to other products such as PRISM and
WorldClim showed strong agreement across large geographic areas but climate surfaces generated in this study (ClimSurf)
had greater variability at high elevation regions, such as in the Sierra Nevada Mountains.
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1. Introduction

Historic and localized weather data are used by clima-
tologists to indicate climate patterns in the past and to
make predictions for the future. Normally, the weather
station data are sparsely distributed and could be consid-
ered as point data. In order to generate wall-to-wall grid-
ded climate surfaces, an interpolation method is needed.
Interpolation is a spatial analysis method using points in
geographical (e.g. weather stations) and temporal space
to predict climate variables in areas where there is no
weather observation data (Daly et al., 2002; New et al.,
2002; Hijmans et al., 2005; Mbogga et al., 2009). The
products from these analyses are known as climate sur-
faces, and over the last decade they have been increas-
ingly used in a wide range of studies, including ecology,
hydrology, fire modelling, and water resources (Bonan
et al., 2003; Kalnay and Cai, 2003; Sheffield et al., 2004;
Guo et al., 2005; Chen et al., 2007; Trabucco et al., 2008;
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Loarie et al., 2009; Mbogga et al., 2009; Thornton et al.,
2009). Despite their wide use, there is a need for finer
spatial and temporal resolution surfaces to make mean-
ingful inferences at regional and monthly scales (Heikki-
nen et al., 2006). Temporal resolution is important for
relating ecological responses to climate change, espe-
cially those associated with population dynamics (birth,
death, and migration) of species whose lifespan and
fecundity period varies from hours to decades (Walther
et al., 2002). With regard to spatial resolution, recent cli-
mate surface development has focused on incorporating a
high number of weather station data points, but have not
fully accounted for the effect of spatial distribution on
the validity and interpretation of their models (Thornton
et al., 1997; New et al., 1999, 2002; Daly et al., 2000;
Maurer et al., 2002; Hijmans et al., 2005; Allan and
Ansell, 2006). In this article, we demonstrate how incor-
porating spatially dependent covariates can lead to more
accurate climate surfaces. Specifically, the interpolation
method we use is Thin Plate Spline (TPS) with covariates
from remote sensing and Digital Elevation Model (DEM)
derived products.
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In climatology, much of the effort has been focused on
identifying appropriate weather data interpolation meth-
ods. For example, some commonly used methods include
TPS, Kriging, and Artificial Neural Networks (ANN)
(Hong et al., 2005; Dibike and Coulibaly, 2006; Han-
cock and Hutchinson, 2006; Stahl et al., 2006; Hofstra
et al., 2008). Among those methods, TPS (Hutchinson
and Gessler, 1994) is considered as one of the best meth-
ods because it is computationally efficient and allows the
use of multiple covariates that can improve interpola-
tion accuracy (Wood, 2003). For example, WorldClim,
which is one of the most popular climate surfaces because
it is global in extent with a spatial resolution of 1 km2

and contains four variables (precipitation, mean tempera-
ture, minimum temperature, and maximum temperature),
was developed using TPS as the interpolation method
(Hijmans et al., 2005).

A DEM has been the covariate most frequently used
in the development of climate surfaces. However, there
has been little evaluation of additional covariates to com-
plement DEM (Diodato, 2005; Daly, 2006). Due to the
advances of remote sensing, GIS, and GPS technol-
ogy, there are a wide range of spatially explicit data
available as covariates that could be used to improve
interpolation accuracy. Although previous research has
suggested that adding such covariates could improve
interpolation results, few studies have comprehensively
examined the use of other elevation and remote sens-
ing derived products for climate data interpolation
(Hijmans et al., 2005). Moreover, lessons learned from
geographic information science (GIScience) reiterate the
importance of accounting for spatial uncertainty and
unequal distribution during interpolation because some
relationships between variables vary spatially (Fothering-
ham et al., 1998). Thus, in order to select the covari-
ates, the product has to meet at least two basic criteria:
(1) the data exist wall-to-wall in the study area and
(2) fine spatial resolutions (e.g. 1 km2) for most climate
products.

The goal of this study was to evaluate the usefulness of
including a range of covariates for climate interpolation.
On the basis of our understanding of climate factors and
the spatial distribution of those factors, we compared the
use of DEM and other remote sensing derived products
to determine which of these covariates resulted in the
greatest improvement in interpolation accuracy. Rather
than determining which interpolation method was best or
creating a rich collection of weather station information,
we focused on investigating what covariate(s) were
best suited for particular climatic variables. We explain
how we maintained quality control on the observational
data, which observation data were used, and how we
processed the data that were used as covariates for the
interpolation. We then tested our method for different
climate variables, precipitation, minimum temperature,
maximum temperature, and mean temperature, for the
Western United States at monthly and yearly (ranging
from 1950 to 1999) temporal resolutions at a spatial
resolution of 1 km2. Finally, we provided a comparison

to other widely used climate surfaces (i.e. WorldClim
(Hijmans et al., 2005) and PRISM (Daly et al., 2002) ).

2. Data and methodology

2.1. Study area

We defined the spatial extent of our study (what we refer
to hereon as the ‘Western US’) as the area encompass-
ing the conterminous United States (Figure 1), with a
geographic extent of 32◦ to 49◦ latitude and −124.7◦

to −112.9◦ longitude and area of 1 710 000 square kilo-
metres. It fully covers California, Oregon, Washing-
ton, Nevada, and partially covers Idaho (80%), Montana
(15%), Utah (10%), and Arizona (10%). The Western
US is considered one of the most culturally and ecologi-
cally important regions in the world, containing roughly
350 wilderness areas, 20 national parks, and 70 national
forests. California in particular is recognized as having
relatively high levels of endemism and is also one of
only five areas in the world with a Mediterranean cli-
mate, which is characterized by warm to hot, dry to
summers and mild to cool, wet winters (Cowling et al.,
2009; Damschen et al., 2010; Mandelik et al., 2010).

2.2. Weather station data and quality control

Weather station data were obtained from the Food and
Agriculture Organization FAOclim2.0 (FAO, 2001) and
the Global Historical Climate Network Dataset (GHCN)
version 2 (Peterson and Vose, 1997). We focused on the
time period from 1950 to 1999 and obtained data from
552 stations on precipitation, 357 stations for maximum
temperature, 381 stations for minimum temperature, and
415 stations for mean temperature (Figure 1). The time
period of 1950 to 1999 was selected since a comparison
with other climate surfaces will be performed.

The data were manually checked station by station.
For temperature we graphed each station’s yearly and
monthly means for all of the years available and deter-
mined if there were any outliers by visual inspection.
For precipitation, we detected outliers with a spatial out-
lier test, which included the precipitation information
from the surrounding weather stations (within 250 km2).
Afterwards, we determined if the stations information
was correct by comparing the latitude and longitude
to its country/city and by comparing the given ele-
vation value to that obtained from the USGS DEM
layer.

Most of the errors that were removed or corrected
from stations were caused by incorrect units, equip-
ment malfunction, and/or human error. Most of the
errors were obvious and easily identified and corrected
(e.g. where longitude and latitude for the station were
swapped). These situations were generally apparent from
the weather station data being markedly different from
neighbouring stations. Other weather stations had values
that made sense for a period of time, but then appeared to
have a multiplier. This was due to the fact that the units
for the weather station were changed. Most of the weather
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Figure 1. Study area is about 1 710 000 km2, ranging from 49◦ to 32◦ latitude and -124.7◦ to -112.9◦ longitude. It includes California, Oregon,
Washington, Nevada, Idaho, Montana, Utah, and Arizona. Weather Station localities for all four climatic variables (precipitation, maximum
temperature, minimum temperature, and maximum temperature) ranging from 1950 to 1999. A total of 552 stations for precipitation, 337 stations

for maximum temperature, 381 for minimum temperature, and 415 stations for mean temperature.

stations for our study area also reported elevation, so we
were able to cross check the recorded elevation with our
DEM layer to make sure that the weather station was
not at the wrong location. After removing/correcting the
weather station data we ended up with 281 904 records
for precipitation, 225 128 records for mean temperature,
201 024 records for maximum temperature, and 212 690
records for minimum temperature.

2.3. Remote sensing data

Multiple remote sensing data were obtained from various
sources and data acquisition processes (in most cases with
resolution of 1 km2):

1. Digital Elevation Model (DEM) was obtained from
the Shuttle Radar Topography Mission (SRTM) at
1 km2 spatial resolution (Farr et al., 2007).
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2. Slope and aspect were generated with the USGS
DEM.

3. Distance to coast was calculated for the centre
location of each pixel.

4. Two different NDVI products were used: Moder-
ate Resolution Imaging Spectroradiometer (MODIS)
and Advanced Very High Resolution Radiometer
(AVHRR) (Townshend et al., 1994; Justice et al.,
1998). Both products are at 1 km2 spatial resolution
and are calculated as follows: (Tucker, 1979; Jackson
et al., 1983; Tucker et al., 1991)

NDVI = NIR − RED

NIR + RED
(1)

where NIR is the near-infrared band and RED is the
red band. For MODIS the data is available every 16
days from the years of 2000 to 2006. For AVHRR
the data is a composite of 10-day periods ranging
from April 1992 to May 1996. Both datasets were
reduced by first taking the maximum of each month
per year (if multiple images exist per month), then
taking the average of all the years to obtain a monthly
average for its corresponding time period (Eklundh,
1995).

5. Solar potential was generated using the hemispherical
viewshed algorithm:

Point radiation = directtotal + diffusetotal (2)

where directtotal and diffusetotal are the sum of radia-
tion of all sectors (Rich et al., 1994). Using the slope
and aspect generated from SRTM DEM data we gen-
erated the hourly solar potential for 2010. The output
was then averaged per month, leading to a monthly
solar potential layer at 1 km2 spatial resolution. All
calculations were carried out with the ArcGIS solar
potential toolbox (ESRI, 2009).

6. Radar rainfall data is calculated from multi-sensor
data (radar and rain gauge) by the National Oceanic
and Atmospheric Administration (NOAA) National
Weather Service (NOAA, 2012). The data ranges
from 1997 to 2010 and were reduced to create an
average for 1997–2010 with a spatial resolution
of approximately 4 km2. Because we wanted the
resolution of our final monthly products to be 1 km2,
we used TPS to interpolate the radar data to this
scale using DEM as a covariate with a second order
polynomial (see Section 4).

7. For precipitation, we used three temperature surfaces:
maximum, minimum, and mean model outputs as
covariates. The temperature surfaces were generated
using TPS with DEM as a covariate.

2.4. Climate interpolation and evaluation

To generate climate surfaces, we used TPS in the pack-
age ‘Fields’ version 6.3 in R version 2.7.1 (Furrer et al.,
2011). TPS aims to derive coherent signals and remove
noise from an interpolation (Wahba and Wendelberger,
1980; Wahba, 1990), and was first applied in climatology

by Hutchinson et al. (Hutchinson and Gessler, 1994;
Hutchinson, 1995). The following equation is for TPS
for two independent position covariates and extra
covariates:

qi = f


xi , yi +

p∑
j=1

βj ψij + εi (i = 1, . . . n)


 (3)

and the smoothing function f (xi,yi) and β i are estimated
by minimizing:

n∑
i=1




qi − f (xi , yi ) −
p∑

j=1

βj ψij

di




2

+ λJm (f ) (4)

where f (xi,yi) is the unknown smooth function, β i is a set
of unknown parameters, xi, yi, ψ ij are the independent
variables, εi is the independent random errors with zero
mean and variance (diσ

2), di are the known weights,
Jm(f ) is a measure of the smoothness of f defined in
terms of mth order derivates of f , and λ is the smoothing
parameter (Hutchinson and Gessler, 1994; Hutchinson,
1995).

To evaluate which covariate produced the lowest
uncertainty for each climatic variable, a tenfold cross-
validation approach was used (Kohavi, 1995; Hijmans
et al., 2005). The climatic data are first divided randomly
into 10 sub-samples and then TPS is run on 9 of 10 sub-
samples, retaining one sub-sample to validate the model.
We repeated the process ten times, guaranteeing that all
of the points are used for both training and validation.
The model accuracy was then determined by the Root
Mean Square Error (RMSE).

RMSE =

√√√√√√
n∑

i=1

(
xp

i − xr
i

)2

n
(5)

where xp
i and xr

i are the model prediction and observed
value for point i , and n is the total number of points.
This is calculated monthly, having a total of 10 (runs
cross-validation) by 12 (months) = 120 runs per cli-
matic variable and covariate. After selecting the best
covariate(s), all the points are then used to create the
monthly average from 1950 to 1999 climate surfaces
at a spatial resolution of 1 km2. Then, using the same
parameters, a monthly climate surface was generated
for each year, creating 50 (years) × 12 (months) = 600
climate surfaces per climatic variable.

In lieu of just ‘blindly’ separating the study area,
we calculated the uncertainty for precipitation based on
ecoregional and DEM classifications. We used the four
level I ecoregional classifications from the United States
Environmental Protection Agency that fell in our study
area: (1) Marine west coast forest, (2) Mediterranean Cal-
ifornia, (3) North American deserts, and (4) Northwestern

 2013 Royal Meteorological Society Int. J. Climatol. 34: 2258–2268 (2014)



2262 O. ALVAREZ et al.

forested mountains (EPA, 2012). For the DEM classi-
fication we selected four classes using natural breaks:
(1) <550 m, (2) 550–1174 m, (3) 1175–1822 m, (4)
>1822 m. Each weather station was then grouped based
on its location and the total annual uncertainty for all
weather stations in that region/class for precipitation was
calculated.

To compare our climate surfaces with PRISM and
WorldClim, we first processed all three datasets to the
same spatial resolution. We reduced the spatial resolution
of our product (ClimSurf) and WorldClim to match
PRISM (4 km2) by spatial upscaling, then reduced the
temporal resolution to match WorldClim by creating an
average from 1950 to 1999. Finally, the total annual
precipitation (mm) was calculated. Temperature variables
were not included in the comparison since the products
would covary tightly with DEM, and we found the
temperature variables were very similar among three
products.

3. Results

3.1. Covariate and uncertainty

For all three temperatures, DEM alone had the lowest
uncertainty value across all possible combinations. In
most cases, when DEM was added with another covariate
it also produced a relatively low uncertainty value; the
only exception was the combination of DEM and slope,

which results in a very high uncertainty. For maximum
and minimum temperature the combination of DEM and
distance to coast had a lower uncertainty than DEM alone
(Table 1). Adding slope to any other covariate for both
mean and minimum temperature produced a high uncer-
tainty value (Tables 2–4). The uncertainty for radar as
a covariate for the three temperatures was very close
to the uncertainty value for DEM, distance to coast,
and both NDVI measures, which also had low uncer-
tainty values. The best covariate for precipitation was
radar, with ∼20% less uncertainty than DEM (Table 1).
We note that the pattern of low uncertainty for tem-
perature that we observed when DEM and any other
covariate were added to the interpolation was mirrored
when adding any covariate with DEM for precipitation.
The use of one of the three temperature variables as a
covariate for precipitation produced better results than
the use of DEM. Adding multiple covariates did not nec-
essarily reduce uncertainty; in most cases these covariates
actually increased the uncertainty for all four climate
variables.

3.2. Errors and comparison

The patterns for all three climate surfaces were similar
(Figure 2), with most of the differences occurring in
places with higher elevation, such as the Sierra Nevada
Mountains. This disagreement is likely due to three facts:
(1) different weather station data, (2) different interpola-
tion methods, and (3) different covariates that were used

Table 1. The uncertainty (RMSE) calculated from the tenfold cross-validation for annual precipitation (mm) for each 1–2 possible
covariate combination.

DEM Radar Slope Solar P. Aspect AVHRR
NDVI

MODIS
NDVI

Tmax Tmean Tmin Distance
to coast

DEM 189.56
Radar 162.23 148.06
Slope >200 >200 195.01
Solar P. >200 184.88 >200 >200
Aspect >200 171.69 >200 >200 >200
AVHRR NDVI >200 172.53 >200 >200 >200 >200
MODIS NDVI >200 164.99 >200 >200 >200 >200 >200
Tmax 196.69 162.13 >200 >200 >200 >200 >200 187.51
Tmean 194.34 167.55 >200 >200 >200 >200 >200 >200 187.11
Tmin 195.68 167.65 >200 >200 >200 >200 227.64 197.64 199.45 192.37
Distance to coast 184.38 183.06 >200 >200 >200 >200 238.19 187.01 >200 188.19 180.18

Table 2. The uncertainty (RMSE) calculated from the tenfold cross-validation for annual mean temperature (Kelvin) for each 1–2
possible covariate combination.

DEM Radar Slope Solar P. Aspect AVHRR NDVI MODIS NDVI Distance to coast

DEM 18.66
Radar 20.25 19.91
Slope >30 >30 19.98
Solar P. >30 >30 >30 20.35
Aspect 20.63 26.76 >30 >30 21.13
AVHRR NDVI 19.58 21.36 >30 >30 23.70 20.12
MODIS NDVI 20.17 22.44 >30 >30 >30 >30 21.22
Distance to coast 21.41 23.88 27.68 22.55 29.26 24.92 25.96 20.15
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Table 3. The uncertainty (RMSE) calculated from the tenfold cross-validation for annual maximum temperature (Kelvin) for each
1–2 possible covariate combination.

DEM Radar Slope Solar P. Aspect AVHRR NDVI MODIS NDVI Distance to coast

DEM 21.02
Radar 21.81 23.40
Slope 22.48 25.17 24.07
Solar P. 21.34 22.30 23.29 27.15
Aspect 21.84 25.15 26.69 23.61 25.09
AVHRR NDVI 21.49 24.02 26.36 22.28 25.69 23.83
MODIS NDVI 21.97 24.92 26.76 23.45 25.84 25.16 24.63
Distance to coast 20.96 23.21 38.85 24.15 23.85 22.90 23.69 22.59

Table 4. The uncertainty (RMSE) calculated from the tenfold cross-validation for annual minimum temperature (Kelvin) for each
1–2 possible covariate combination.

DEM Radar Slope Solar P. Aspect AVHRR NDVI MODIS NDVI Distance to coast

DEM 21.30
Radar 22.02 22.50
Slope >30 >30 22.29
Solar P. 21.71 24.65 >30 22.95
Aspect 22.82 25.84 >30 25.35 24.38
AVHRR NDVI 23.70 24.81 >30 25.28 26.16 23.62
MODIS NDVI 22.29 24.89 >30 24.99 27.08 25.83 23.81
Distance to coast 20.84 22.08 25.31 25.47 25.41 23.59 23.26 21.32

Figure 2. (Top row) Comparison of PRISM, WorldClim, and ClimSurf for total annual precipitation (mm) and bitwise difference between all
three climate surface products (bottom row). Data was rescaled to match the coarser spatial and temporal resolution which was 4 km2 and average

of 1950–1999.
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Figure 3. The uncertainty for total annual precipitation (mm), for multiple covariates (TOP) by dividing elevation into four different classes: (1)
<550 (3062 points), (2) 550–1174 (5998 points), (3) 1175–1822 (936 points), (4) >1822 (168 points) (BOTTOM) by ecoregion, four classes
are in located in our study area, (MWC) Marine west coast forest (752 points), (MCA) Mediterranean California (1307 points), (NAD) North

American deserts (2027 points), (NWFM) Northwestern forested mountains (1864 points).

in the interpolation. For example, ClimSurf only used
two sources of weather station data, whereas the other
surfaces used a few more such as WMO (see Section 2).

3.3. Precipitation by elevation and ecoregion classes

Figure 3 shows the uncertainty for precipitation surface
separated by elevation and ecoregion classes. In general,
radar and distance to coast were the two covariates that
produced the lowest uncertainty. The analysis indicated
that aspect yielded the greatest uncertainty regardless
of the elevation class. The only class in which aspect
did not give the greatest uncertainty was in elevation
class 4 (above 1833 m), where NDVI derived from
AVHRR was the highest. In the Marine west coast forest
ecoregion, there was a cluster of covariates that yielded
almost identical uncertainties, but uncertainties by these
covariates were approximately 40% higher than radar.

For the elevation classes we observed the same pattern
as for the Marine west coast forest ecoregion, a cluster
of covariates giving uncertainties about 40% higher than
radar. For class 3 (1175 to 1822 m) we observed that
slope performed better than DEM and very close to
radar. The class that was most interesting was class
4, the highest elevation class (more than 1822 m). All
the points were scattered over the range of 15–50 mm
of uncertainty, which is most likely a result of fewer
observation points in high elevation areas.

4. Discussion and conclusion

4.1. Uncertainty

Uncertainty in precipitation values was not minimized
using DEM alone. Interestingly, NDVI resulted in a
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Figure 4. Comparison of interpolating radar data from 4 to 1 km2 using multiple algorithms (A, Universal Kriging; B, Regular Spline; C, Inverse
Distance Weighted; D, Thin Plate Spline) for the month of January.

higher uncertainty than DEM for precipitation. We did
not expect these results since NDVI, vegetation produc-
tivity, and precipitation usually have strong correlations
with each other (Ichii et al., 2002). One possible rea-
son is that the NDVI derived from remote sensing data
has large uncertainty, which will propagate into the inter-
polated precipitation surface. We found that while both
MODIS and AVHRR were good covariates, they did not
produce lower uncertainty than DEM. This required addi-
tional data, in particular radar. However, one problem
with using radar data (as mentioned in Section 2) was the
coarse spatial resolution (4 km2). In our preliminary anal-
yses multiple interpolation algorithms were run includ-
ing Kriging, IDW, Regular Spline, and TPS. On visual
inspection we noticed that the new interpolated radar sur-
face did not contain much detail. On the basis of previous
processing attempts with different covariates, we found
that, in most cases, adding multiple covariates increased
the total uncertainty. We then ran the radar 4 km2 data
with TPS and DEM as a covariate (Figure 4). By adding
DEM as a covariate to refine the radar resolution, we
were indirectly including two covariates in interpolating
precipitation, and hence were able to decrease the uncer-
tainty in precipitation.

Although radar did not always produce the lowest
uncertainty for precipitation in different elevation and

ecoregion classes, it did have the lowest overall uncer-
tainty value among the covariates. This is an intrinsic
relationship as radar is essentially a measurement of liq-
uid water in the atmosphere. Radar is a known proxy for
precipitation and hence is a strong candidate for covaria-
tion. The difference from the lowest (radar) to the highest
(usually aspect) uncertainty varied from 5% to as high
as 60%. As shown in Figure 5, we observed that radar
covaried with the observed weather station data more
closely than DEM, though both covariates had a strong
correlation.

When precipitation was stratified by month the results
indicated that during wet months (November through
February) using radar as a covariate decreased the
uncertainty by as much as 33% relative to using DEM
(Figure 6). During warmer, drier months the contrast
was smaller, but radar still had the lowest uncertainty
among the covariates. Aspect, NDVI and solar potential
yielded the greatest uncertainty for each month, with
aspect yielding as high as double and solar potential as
high as 80% greater than radar during the wet season.
The uncertainty for these covariates was reduced during
the warmer months, but even so, they were low-ranking
variables.

It should also be noted that adding multiple covariates
could increase rather than decrease the uncertainty in
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Figure 5. Output of the tenfold cross-validation (RMSE): x -axis, observer station data; y-axis, interpolated model prediction for precipitation
(mm). (Top) Radar as a covariate (bottom) DEM as a covariate.

most cases, for all four climate variables. This can
possibly be due to error propagation. Adding more
covariates will add more sources of errors, which will
propagate into the final product. Another possible reason
is over-fitting. For the same sample size, adding more
covariates can increase the risk of over-fitting. If we have
more observation data, then the problem of over-fitting
can be reduced.

4.2. Improvements and conclusion

As with any climate surface, we experienced limita-
tions. The main one this was the lack of data in high
elevation regions, and not surprisingly was where the

greatest uncertainties were found. Note though that
adding weather station data does not always improve
climate surfaces. For instance, if the data are located
in regions of existing high station density then it is
unlikely much unique information would be gained from
its inclusion. The second limitation was that, although
TPS is considered one of the best interpolation methods
(Hong et al., 2005; Dibike and Coulibaly, 2006; Han-
cock and Hutchinson, 2006; Stahl et al., 2006; Hofstra
et al., 2008), we did not test it against other interpolation
methods, such as ANN or Kriging.

There are many future directions for improving climate
surfaces other than simply adding more weather station
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Figure 6. The uncertainty (y-axis) of total monthly precipitation (mm) for each covariate, display in monthly time-steps.

data or generating a set of global climate surfaces. A
key objective of this study was to probe more effective
approaches rather than simply using traditional covariates
(DEM) and explore other potential sources of co-varying
environmental influences. We did not use other potential
remote sensing data that might have an influence on
the climatic variables, such as snow cover. However,
indirectly adding multiple covariates as we did with
radar may often be an effective approach in reducing
uncertainty.

In conclusion, significant work has been carried out to
determine what covariate is best suited for each climate
variable. We have shown that there are better products
which will help reduce the uncertainty, however, we
know that there might be other products that might as well
be better suited. We made a visual comparison with other
well known products to visually show the differences and
between those products.
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